16.04.2024 в 16:48
Алексей Устинов
Методы equal(), eq() и ne() в PyTorch
В PyTorch методы equal(), eq() и ne() используются для сравнения значений в тензорах и выполнения логических операций. Они позволяют определить равенство или неравенство элементов.
Метод equal может проверить, что два тензора совпадают, как показано ниже:
equal()
можно вызвать как изtorch
, так и изtensor
.- Тензоры могут быть 0D или более D-тензорами.
import torch
tensor1 = torch.tensor([5, 9, 0, 1])
tensor2 = torch.tensor([5, 9, 0, 1])
torch.equal(tensor1, tensor2)
tensor1.equal(tensor2)
torch.equal(tensor2, tensor1)
tensor2.equal(tensor1)
# True
tensor1 = torch.tensor([5, 9, 0, 1])
tensor2 = torch.tensor([5., 9+0j, False, True])
torch.equal(tensor1, tensor2)
tensor1.equal(tensor2)
torch.equal(tensor2, tensor1)
tensor2.equal(tensor1)
# True
tensor1 = torch.tensor([5, 9, 0, 1])
tensor2 = torch.tensor([7, 9, 0, 1])
torch.equal(tensor1, tensor2)
tensor1.equal(tensor2)
torch.equal(tensor2, tensor1)
tensor2.equal(tensor1)
# False
tensor1 = torch.tensor([5, 9, 0, 1])
tensor2 = torch.tensor([[5, 9, 0, 1]])
torch.equal(tensor1, tensor2)
tensor1.equal(tensor2)
torch.equal(tensor2, tensor1)
tensor2.equal(tensor1)
# False
Метод eq может проверять равенство двух тензоров поэлементно, как показано ниже:
eq()
может быть вызван как изtorch
, так иtensor
.- Тензоры могут быть 0D или более D-тензорами.
- В результате получается тензор с более высоким D, который имеет больше элементов.
import torch
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4], [6, 3, 5]])
torch.eq(tensor1, tensor2)
tensor1.eq(tensor2)
torch.eq(tensor2, tensor1)
tensor2.eq(tensor1)
# tensor([[False, True, False], [False, False, True]])
tensor1 = torch.tensor([[5, 0, 3]])
tensor2 = torch.tensor([[5, 5, 5], [0, 0, 0], [3, 3, 3]])
torch.eq(tensor1, tensor2)
tensor1.eq(tensor2)
torch.eq(tensor2, tensor1)
tensor2.eq(tensor1)
# tensor([[True, False, False],
# [False, True, False],
# [False, False, True]])
tensor1 = torch.tensor([[5, 0, 3], [6, 9, 1]])
tensor2 = torch.tensor([[[2, 7, 3], [6, 3, 1]],
[[5, 0, 4], [8, 9, 7]]])
torch.eq(tensor1, tensor2)
tensor1.eq(tensor2)
torch.eq(tensor2, tensor1)
tensor2.eq(tensor1)
# tensor([[[False, False, True], [True, False, True]],
# [[True, True, False], [False, True, False]]])
tensor1 = torch.tensor([[5, 0, 3], [6, 9, 1]])
tensor2 = torch.tensor([[[2., 7., 3.], [6., 3., True]],
[[5+0j, False, 4+0j], [8+0j, 9+0j, 7+0j]]])
torch.eq(tensor1, tensor2)
tensor1.eq(tensor2)
torch.eq(tensor2, tensor1)
tensor2.eq(tensor1)
# tensor([[[False, False, True], [True, False, True]],
# [[True, True, False], [False, True, False]]])
tensor1 = torch.tensor([[6, 9, 1], [5, 0, 3]])
tensor2 = torch.tensor([[[2, 7, 3], [6, 3, 1]],
[[5, 0, 4], [8, 9, 7]]])
torch.eq(tensor1, tensor2)
tensor1.eq(tensor2)
torch.eq(tensor2, tensor1)
tensor2.eq(tensor1)
# tensor([[[False, False, False], [False, False, False]],
# [[False, False, False], [False, False, False]]])
Метод ne может проверять неравенство двух тензоров поэлементно, как показано ниже:
ne()
может быть вызван как изtorch
, так иtensor
.- Тензоры могут быть 0D или более D-тензорами.
- В результате получается тензор с более высоким D, который имеет больше элементов.
ne()
и not_equal() одинаковы, посколькуnot_equal()
это псевдонимne()
.
import torch
tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4], [6, 3, 5]])
torch.ne(tensor1, tensor2)
tensor1.ne(tensor2)
torch.ne(tensor2, tensor1)
tensor2.ne(tensor1)
# tensor([[True, False, True], [True, True, False]])
tensor1 = torch.tensor([[5, 0, 3]])
tensor2 = torch.tensor([[5, 5, 5], [0, 0, 0], [3, 3, 3]])
torch.ne(tensor1, tensor2)
tensor1.ne(tensor2)
torch.ne(tensor2, tensor1)
tensor2.ne(tensor1)
# tensor([[False, True, True],
# [True, False, True],
# [True, True, False]])
tensor1 = torch.tensor([[5, 0, 3], [6, 9, 1]])
tensor2 = torch.tensor([[[2, 7, 3], [6, 3, 1]],
[[5, 0, 4], [8, 9, 7]]])
torch.ne(tensor1, tensor2)
tensor1.ne(tensor2)
torch.ne(tensor2, tensor1)
tensor2.ne(tensor1)
# tensor([[[True, True, False], [False, True, False]],
# [[False, False, True], [True, False, True]]])
tensor1 = torch.tensor([[5, 0, 3], [6, 9, 1]])
tensor2 = torch.tensor([[[2., 7., 3.], [6., 3., True]],
[[5+0j, False, 4+0j], [8+0j, 9+0j, 7+0j]]])
torch.ne(tensor1, tensor2)
tensor1.ne(tensor2)
torch.ne(tensor2, tensor1)
tensor2.ne(tensor1)
# tensor([[[True, True, False], [False, True, False]],
# [[False, False, True], [True, False, True]]])
tensor1 = torch.tensor([[6, 9, 1], [5, 0, 3]])
tensor2 = torch.tensor([[[2, 7, 3], [6, 3, 1]],
[[5, 0, 4], [8, 9, 7]]])
torch.ne(tensor1, tensor2)
tensor1.ne(tensor2)
torch.ne(tensor2, tensor1)
tensor2.ne(tensor1)
# tensor([[[True, True, True], [True, True, True]],
# [[True, True, True], [True, True, True]]])