Публичные API - это круто!
Человеческий мозг может легко распознавать и различать объекты на изображении. Например, имея изображение кошки и собаки, за наносекунды мы различаем их, и наш мозг воспринимает это различие. Если машина имитирует это поведение, она максимально приближена к искусственному интеллекту. Впоследствии область компьютерного зрения направлена на имитацию системы зрения человека - и было много вех, которые преодолели барьеры в этом отношении.Более того, в наши дни машины могут легко различать разные изображения, обнаруживать предметы и лица и даже генерировать изображения людей, которых не существует! Очаровательно, не правда ли? Одним из моих первых опытов, когда я начинал работать с компьютерным зрением, была задача классификации изображений. Сама способность машины различать объекты ведет к большему количеству направлений исследований, например, к различению людей.
По мнению специалистов по данным, R против Python - это постоянная борьба, когда речь заходит о том, какой язык лучше. Хотя у каждого языка есть свои сильные стороны, на мой взгляд, у R есть один передовой трюк, который трудно превзойти: R имеет фантастические инструменты для передачи результатов посредством визуализации.
Pandas - одна из наиболее часто используемых библиотек Python как для специалистов по данным, так и для инженеров. Сегодня я хочу поделиться некоторыми советами по Python, которые помогут нам проводить проверки квалификации между двумя фреймами данных.
Гео данные могут быть интересными. Одна интерактивная геопространственная визуализация предоставляет много информации о данных и области и многое другое. У Python так много библиотек. Трудно понять, какой из них использовать. Для геопространственной визуализации я буду использовать Folium. Он очень прост в использовании, и он также имеет несколько стилей, чтобы соответствовать вашему выбору и требованиям.
Платформы онлайн-обучения и соревнований по Kaggle обычно предоставляют вам полный (и чистый) набор данных. На практике, первый шаг проекта машинного обучения - получить в свои руки необходимые данные. Очистка веб-страниц или извлечение данных с веб-сайтов является одним из инструментов для достижения этой цели.
В этой статье мы изучим процесс сбора данных в Twitter, обработки текста и географического отображения данных. Мы будем иметь дело с подмножеством данных, имеющим ключевые слова #python и #javascript.
Присоединяйся в тусовку
Поделитесь своим опытом, расскажите о новом инструменте, библиотеке или фреймворке. Для этого не обязательно становится постоянным автором.
В этом месте могла бы быть ваша реклама
Разместить рекламу